- **1** ${}^7C_2=21, {}^6C_2=15$ and ${}^6C_1=6$. Clearly, ${}^7C_2={}^6C_2+{}^6C_1$.
- **2** The n=7 row is:

172135352171

 $^7C_2=21$ since this is the third entry in the row.

 $^7C_4 = 35$ since this is the fifth entry in the row.

The n=8 row is:

18285670562881

 $^8C_4 = 70$ since this is the fifth entry in the row.

 $^8C_6=28$ since this is the seventh entry in the row.

- **4** A set with 6 elements has $2^6=64$ subsets. Note that this includes the empty subset, which corresponds to selecting none of the DVDs.
- **5** A set of 5 elements has $2^5 = 32$ subsets.
- **6** A set with 10 elements has $2^{10} = 1024$ subsets.
- **7** A set with 6 elements has $2^6 1 = 63$ non-empty subsets.
- **8** A set with 8 elements has $2^8 {}^8C_1 {}^8C_0 = 256 8 1 = 247$ subsets with at least 2 elements.
- 9 If the set already contains the numbers 9 and 10, then we need to find the number of subsets of $\{1, 2, \dots, 8\}$. There are $2^8 = 256$ of these.
- **10** Each subset of coins creates a different sum of money. We therefore need to find the number of non-empty subsets of a 4 element set. There are $2^4 1 = 15$ of these.
- **11a** We consider the selfish subsets of size 1 through to 8. There is 1 selfish set of size 1, namely {1}.

If a selfish set has size 2, then it is of the form $\{2,a\}$ where a is chosen from the remaining 7 numbers. This can be done in 7C_1 ways.

If a selfish set has size 3, then it is of the form $\{3, a, b\}$ where the two numbers a and b are chosen from the remaining 7 numbers. This can be done in 7C_2 ways.

Continuing in this fashion, we find that the number of selfish sets is just the sum of entries in row n=7 of Pascal's Triangle. Therefore, there are $2^7=128$ selfish sets.

- **b** We consider the selfish subsets of size 1 through to 8.
 - There is 1 selfish subset of size 1. Its compliment is also selfish, as it has 7 elements and contains the number 7. A selfish set of size 2 is of the form $\{2,a\}$, where $a \neq 2$. Since the compliment is also selfish, $a \neq 6$. Therefore, a can be chosen from the remaining 6 numbers. This can be done in 6C_1 ways.

A selfish set of size 3 is of the form $\{3, a, b\}$, where $a, b \neq 3$. Since the compliment is also selfish, $a, b \neq 5$.

Therefore, a and b can be chosen from the remaining 6 numbers. This can be done in 6C_2 ways.

A selfish set of size 4 is of the form $\{4, a, b, c\}$, where $a, b, c \neq 4$. The compliment cannot also be selfish, since the compliment has 4 elements but does not contain the number 4.

A selfish set of size 5 is of the form $\{5,a,b,c,d\}$, where $a,b,c,d\neq 5$. Since the compliment is also selfish, $a,b,c,d\neq 3$. Therefore, a,b,c,d can be chosen from the remaining 6 numbers. This can be done in 6C_4 ways. Continuing in this fashion, we find that the number of selfish sets with a selfish compliment is just the sum of entries in row n=6 of Pascal's Triangle, less 6C_3 . Therefore, there are $2^6-{}^6C_3=44$ selfish sets whose compliment is also selfish.